Participating in the annual review of H2020 SMESEC project

On 5 July 2018 I had the chance to participate in the annual review of H2020 SMESEC project at FORTH in Heraklion, Crete as independent expert of EU. SMESEC aims at providing a unified security framework for Small Medium Enterprises (SME). Since SME’s are one of the most important drivers for innovation, but they often tend not properly to plan their cybersecurity defence, either by underestimating the risks and consequences of cyber attacks or by not being capable of keeping pace with the progress in this ever-evolving field, the main goal of SMESEC is to identify what are the needs from the SME perspective and translate them into requirements for a unified framework, which will eventually consist of the SMESEC partners’ contributed products.

The SEMSEC products can cover a wide range of security market segments, and it is expected that the unification will bring even higher added value to the products and the project framework itself.

It was really an interesting review meeting, which showcased the added value of SMESEC framework. I would like to thank the consortium for the hospitality and the great organization of the meeting.



Presenting the ICT-17 5GENESIS project at the EuCNC 2018 in Ljubljana

In EuCNC 2018 in Ljubljana, I had the opportunity to present the ICT-17 5GENESIS project in a special session of the 5G-PPP for the phase 3 projects and as an introduction to the forthcoming ICT-19-2019 call “Advanced 5G validation trials across multiple vertical industries”. 5GENESIS will provide large scale prototype 5G testbeds in five European cities (Athens, Limassol, Malaga, Berlin and Surrey). These testbeds will be used by representatives of relevant business sectors (e.g. media and entertainment, e-health, automotive etc.) to validate the technological advances that 5G brings to these markets.

In this context, the main goal of 5GENESIS will be to validate 5G KPIs for various 5G use cases, in both controlled set-ups and large-scale events. This will be achieved by bringing together results from a considerable number of EU projects as well as the partners’ internal R&D activities in order to realise an integrated End-to-end 5G Facility.

The 5GENESIS Facility, as a whole, will:

  • Implement and verify all evolutions of the 5G standard, via an iterative integration and testing procedure;
  • Engage a wide diversity of technologies and chain innovations that span over all domains, achieving full-stack coverage of the 5G landscape;
  • Unify heterogeneous physical and virtual network elements under a common coordination and openness framework exposed to experimenters from the vertical industries and enabling end-to-end slicing and experiment automation; and
  • Support further experimentation projects, in particular those focused on vertical markets.

The five platforms of the 5GENESIS Facility, and their main features/orientation, are:

  • The Athens Platform. An edge-computing-enabled shared radio infrastructure (gNBs and small cells), with different ranges and overlapping coverage that are supported by an SDN/NFV enabled core, to showcase secure content delivery and low latency applications in large public-events.
  • The Málaga Platform. Automated orchestration and management of different network slices over multiple domains, on top of the 5G NR and fully virtualised core network to showcase mission critical services in the lab and in outdoor deployments.
  • The Limassol Platform. Radio interfaces of different characteristics and capabilities, combining terrestrial and satellite communications, integrated to showcase service continuity and ubiquitous access in underserved areas.
  • The Surrey Platform. Multiple radio access technologies that can support massive Machine Type Communications (mMTC), including 5G NR and NB-IoT, combined under a flexible Radio Resource Management (RRM) and spectrum sharing platform to showcase massive IoT services.
  • The Berlin platform: Ultra dense areas covered by various network deployments, ranging from indoor nodes to nomadic outdoor clusters, coordinated via advanced backhauling technologies to showcase immersive service provisioning.

Satellite Communications in the 5G Era

Our book chapter entitled “NFV-based Scenarios for Satellite -Terrestrial Integration” by H. Koumaras, G. Gardikis, Ch. Sakkas, G. Xilouris, V. Koumaras, M. A. Kourtis was published by IET at the book “Satellite Communications in the 5G Era” (Editors Shree Krishna Sharma, Symeon Chatzinotas and Pantelis-Daniel Arapoglou) (link to book site).


The book explores promising scenarios for 5G Satellite Communications (SatCom), novel paradigms for satellite-terrestrial integration and emerging technologies for the next generation of satellite systems and hybrid/integrated satellite-terrestrial systems, and focuses on recent research efforts towards 5G and beyond.

Our contribution focuses on describing NFV-based scenarios for satellite-terrestrial integration.

SDN ‐ based WiFi ‐ VLC Coupled 5G System

In IEEE WoWMoM 2018 conference, I presented our work on an SDN-based WiFi-VLC Coupled System for Optimised Service Provision in 5G Networks. Visible Light Communication (VLC) is a powerful supplement, which has gained tremendous attention recently and has become a favorable technology in short-range communication scenarios for the Fifth Generation (5G) networks. VLC possesses a number of prominent features to address the highly demanding 5G system requirements for high capacity, high data rate, high spectral efficiency, high energy efficiency, low battery consumption, and low latency. However, this prominent performance is limited by the imperfect reception, since line of sight channel condition may not always exist in practice. The paper presents and experimentally validates a SDN-assisted VLC system, which is coupled with WiFi access technology in order to improve the reliability of VLC system, reassuring zero packet loss reception quality due to misalignment or path obstructions or when the user is moving between two consecutive VLC transmitters and experience “dead coverage zones”.


The experimental setup of this paper includes an SDN network domain, which is controlled by Ryu controller that is capable of executing python-based SDN apps. The CPE is a laptop equipped with a USB VLC receiver and an Arduino-based luminance detector, placed next to the VLC dongle.

The experimental topology complements the VLC technology with a 2.4GHz WiFi 802.11g access point, which was used in the experiment as a dynamically coupled access technology for the zones that the user has poor reception quality, such as the dead reception zones between two successive VLC transceivers. An SDN app was developed in order to handle the seamless switching of the access technology (i.e. WiFi or VLC) used each time in order to maintain good reception quality.

fig2As it was expected, while the user is moving away from the center of the LED light, the lx value (and respectively the SNR value) is decreasing, which means that the reception quality drops and the http-streaming video service from normal playback is starting to appear occasional pauses. Gradually the lx value reaches to zero as the users is located in a dead reception zone between two successive lamps, where the video service provision is paused/interrupted (packet loss reaches 100%/blue line). The video service playback re-initiates when the user reaches the coverage area of the next VLC transmitter, since all the lamps are broadcasting the same content, and therefore the distance from the next light source is decreasing and therefore the lm value and the SNR value are gradually increasing.

The experiment was repeated placing the CPE at the same distances, but with the SDN controller enabled and the proposed SDN-app active and properly configured. The user requested the HTTP streaming video service and once the service started, she/he started to move from distance equal to zero with step of 30cm, towards the next VLC lamp. When she/he covered a distance of two meters (i.e. at the dead coverage zone between the two lamps), then the packet loss started to increase (as is it observed in the figure above in oragne). Then the SDN-app detected the loss of the ctrl_messages via the VLC channel and once the window of 2 seconds had been completed, the SDN-app instructed via the SDN Controller appropriate Openflow commands to be applied on the OVS switch for diverting the downloading flow to WiFi. The switching process performed seamlessly to the end-user, which resulted in maintaining the video service delivery intact, without any service interruption or quality degradation.

Read the full paper. Available here.